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Abstract: In this p a p e r , we have proposed a  t e c h n i q u e  for designing of fractional order d i g i t a l    

differentiator by use of power fu n c t i on  and l e a s t -square method. The  input signal  is altered  into  a 

power  function by  using  Taylor series  expansion and  its  fractional derivative is calculated using  the  

Grunwald-Letnikov explanation. Then, fractional order  digital  differentiator is demonstrated  as a finite  

impulse  response  (FIR) system,  which  produces fractional order  derivative of the  Grunwald-Letnikov 

category  for a power  function. The FIR system coefficients are achieved by using least square method. Two 

illustrations  are used  to  demonstrate that the  fractional derivative of the  digital  signals  is calculated by  

using  the  suggested  technique. The  results  of the  second example  divulges  that the suggested  method 

gives superior  performance in comparison to  existing  filtering 
method. 
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I. INTRODUCTION 

This paper describes a novel approach for designing 

fractional order digital differentiator. The fractional order 

calculus is a 300-years-old topic; the theory of fractional-

order derivative was developed usually in the nineteenth 
century. Recent books provide a good source of references 

on fractional calculus [1], [2]. However, applying 

fractional-order calculus to dynamic systems control is just 

a recent focus of interest. The fractional order of 

differentiation and integration is useful in control system 

applications. Fractional Calculus is generalization of 

ordinary differentiation and integration to non-integer 

order i.e. taking real number powers of differentiation 

operator.
 

 𝐷𝑣𝑓 𝑥 =
𝑑𝑣𝑓(𝑥)

𝑑𝑥𝑣
          (1) 

If 𝑣 is a natural number then the case is called higher 

integer order differentiation. Positive real number 

corresponds to fractional order differentiation. The 

historical developments culminated in two calculi which 

are based on the work of Riemann and Liouville (RL) at 
the one side and on the work of Grunwald and Letnikov 

(GL) on the other. The classical form of fractional calculus 

is given by the Riemann-Liouville integral. It is given as 

follows [1]: 

  𝑎𝐷
𝑡
−𝛼

𝑓 𝑡 = 𝑎𝐼
𝑡
−𝛼

𝑓 𝑡 =
1

Г(𝛼)
  𝑡 − 𝜏 𝛼−1𝑓(𝜏)
𝑡

𝑎
𝑑𝜏      (2) 

The main interest of this paper is to design a fractional 
order digital differentiator by the use of power function 

and least-square technique. In our methodology the input 

signal is altered into a power function by using Taylor 

series expansion and its fractional derivative is calculated 

using the Grunwald-Letnikov definition. Then, a fractional 

order digital differentiator is demonstrated as a finite 

impulse response (FIR) system which yields fractional  

 
 

order derivative of the Grunwald-Letnikov type for a 

power function. Least-square technique is used to attain 

FIR system approximation to fractional order 

differentiator. Power function has many applications in 
polynomial based filter designing. This paper is organized 

as follows: In Section 2, computation of fractional 

derivative based on Talyor series expansion is defined. In 

Section 3, the power function based design of least square 

fractional order FIR differentiator is defined. In Section 4, 

two examples are presented to validate the effectiveness of 

the proposed design approach. Finally, conclusions are 

made. 

 

II. COMPUTATION OF FRACTIONAL 

DERIVATIVE 
From the last few times, the concept of fractional calculus 

has been used in many applications of signal processing. 

The exclusive feature of fractional calculus is its capability 

to generalization of integral and differential operators to 

non-integer order. The generalized continuous integral-

differential operator in is as follows 

𝐷𝑡
𝛼 =  

𝑑𝛼

𝑑𝑡 𝛼
,                            𝛼 > 0

1,                                 𝛼 = 0 

 (𝑑𝜏)𝛼 ,                     𝛼 < 0
𝑡

𝑎

 
𝑎

.                      (3) 

where 𝐷𝑡
𝛼

𝑎
.  denotes integral-differential operator to 

compute the  𝛼𝑡ℎ  order fractional differentiation and 
integration of the input signal with respect to  

𝑡 and 𝛼 is the primary condition of the operation. Some of 

the standard definitions for this integral-differential 
operation are Riemann-Liouville, Grunewald- Letnikov  

and the Caputo definitions etc. In this paper, the 
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Grunwald-Letnikov definition for the fractional order 

calculation is used which is as follows 

𝐷𝑡
𝛼

𝑎
. 𝑠 𝑡 = lim∆→0  

 −1 𝑘𝐶𝑘
𝛼

∆𝛼
𝑠(𝑡 − 𝑘∆)𝛼

𝑘=0                      (4) 

where 𝐶𝑘
𝛼  is the binomial coefficient. The value of 𝐶𝑘

𝛼  is 

given by using the relation in between Eulers, Gamma 
function and factorial, which is defined as 

𝐶𝑘
𝛼 =  𝛼

𝑘
 =

Г(𝛼+1)

Г(𝑘+1)Г(𝛼−𝑘+1)
 =  

1               𝑘 = 1
𝛼 𝛼−1  𝛼−2 …(𝛼−𝑘+1)

1.2.3..𝑘
  
      (5) 

where, Г(. ) is the gamma function. The outcome of 

fractional derivative depends on the bound of the operator 
a. A common value for this bound is a = 0. Based on this 

operator the derivative of power function 𝑡𝑟  is 
 

𝐷𝑡
𝛼𝑡𝑟 =

Г 𝑟+1 

Г 𝑟−𝛼+1 
𝑡𝑟−𝛼0

.            (6) 

If s(t) is a given function in terms of power series 

expansion, its fractional order derivative can be calculated 

using equation (6). The fractional order derivative of a 

digital signal is calculated by relating the discrete time 
samples of the signal to continuous time signal s(t). Any 

given function s(t) can be represented in the polynomial of 

t using Taylor series expansion (Tseng (2001)), as 

𝑠 𝑡 =  𝑎𝑟 𝑡
𝑟∞

𝑟=0                                  (7)                  

where, 𝑎𝑟 =
𝐷𝑟𝑠(0)

𝑟 !
 for t=0, the 𝛼𝑡ℎ  order fractional 

derivative of s(t) is given as 

𝐷𝑡
𝛼𝑠(𝑡) =  𝑎𝑟𝐷𝑡

𝛼𝑡𝑟∞
𝑟=00

.  =  𝑎𝑟
Г(𝑟+1)

Г(𝑟−𝛼+1)
𝑡𝑟−𝛼𝛼

𝑟=0          (8) 

Now, assume that t = nT, where T is sampling period. z(n) 

= s(nT) is the sampling of s(t) at t = n. Let power function 

𝑠 𝑛 = 𝑛𝑟 , 0 ≤ 𝑛 ≤ 𝑀 − 1 and its fractional derivative 

𝐷𝑡
𝛼𝑠(𝑛) is given as 

𝐷𝛼𝑠 𝑛 =  𝑎𝑟
Г(𝑟+1)

Г(𝑟−𝛼+1)
𝑡𝑟−𝛼∞

𝑟=0         (9) 

If the signal s(n) is delayed by a value I its fractional 

derivative 𝐷𝑡
𝛼𝑠(𝑛 − 1) is given as 

𝐷𝛼𝑠 𝑛 − 𝐼 =  𝑎𝑟
Г(𝑟+1)

Г(𝑟−𝛼+1)
(𝑛 − 𝐼)𝑟−𝛼∞

𝑟=0       (10) 

The above equation shows the desired response of 

fractional order differentiator. In the following section, 

this result will be used to estimate the FIR filter output. 
 

III. LEAST SQUARE DESIGN METHOD 

In this section, we will use the results of 𝐷𝛼𝑠(𝑛) to 

compute the transfer function of fractional order 

differentiator, whose frequency response estimates the 

ideal frequency response of fractional order differentiator 

in (1). The transfer function of digital FIR filter can be 

written as 

𝐻 𝑧 =  ℎ 𝑞 𝑧−𝑞     𝑁
𝑞=0      (11) 

We have to design a FIR filter H(z) which is a digital 

differentiator with filter coefficients h(q). When the signal 

s(n) passes through Nth order FIR filter H(z), its output 

y(n) is given by 

𝑦 𝑛 =  ℎ 𝑘 𝑠(𝑛 − 𝑘)𝑁
𝑘=0          (12) 

since 

𝑠 𝑛 =  𝑎𝑟𝑛
𝑟∞

𝑟=0   

𝑠 𝑛 − 𝑘 =  𝑎𝑟(𝑛 − 𝑘)𝑟∞
𝑟=0   

𝑦 𝑛 =  𝑎𝑟  ℎ 𝑘 𝑁
𝑘=0 (𝑛 − 𝑘)𝑟∞

𝑟=0                  (13) 
 

To achieve the 𝛼𝑡ℎ  order fractional derivative of s(n), 
compute the filter coefficients h(q) such that filter output 

y(n) is identical to the delayed fractional derivative 

𝐷𝛼𝑠(𝑛 − 𝐼), that is 

𝐷𝛼𝑠 𝑛 − 𝐼 = ℎ 𝑛 ∗ 𝑠(𝑛)  

𝐷𝛼𝑠 𝑛 − 𝐼 =  𝑎𝑟  ℎ 𝑘 𝑁
𝑘=0

∞
𝑟=0  𝑛 − 𝑘 𝑟    (14) 

From eq. (10) and (14), we obtain 

 𝑎𝑟
Г(𝑟 + 1)

Г(𝑟 − 𝛼 + 1)
(𝑛 − 𝐼)𝑟−𝛼

∞

𝑟=0

=  𝑎𝑟  ℎ(𝑘)

𝑁

𝑘=0

∞

𝑟=0

(𝑛 − 𝑘)𝑟         (15) 

 

The comparison between the desired response and FIR 

filter output gives the error function e(n), which can be 

written as 

𝑒 𝑛 =  𝑎𝑟
Г(𝑟 + 1)

Г(𝑟 − 𝛼 + 1)
(𝑛 − 𝐼)𝑟−𝛼

∞

𝑟=0

− 𝑎𝑟  ℎ(𝑘)

𝑁

𝑘=0

∞

𝑟=0

(𝑛 − 𝑘)𝑟  

Using least square technique, the function to be minimized 

is 

𝜀 =  𝑒2(𝑛)

𝑀−1

𝑛=0

 

=  .

𝑀−1

𝑛=0

  𝑎𝑟
Г(𝑟 + 1)

Г(𝑟 − 𝛼 + 1)
(𝑛 − 𝐼)𝑟−𝛼

∞

𝑟=0

− 𝑎𝑟  ℎ(𝑘)

𝑁

𝑘=0

∞

𝑟=0

(𝑛 − 𝑘)𝑟 

2

 

=  .

𝑀−1

𝑛=0

  𝑎𝑟𝐶(𝑟,𝛼)(𝑛 − 𝐼)𝑟−𝛼
∞

𝑟=0

− 𝑎𝑟  ℎ(𝑘)

𝑁

𝑘=0

∞

𝑟=0

(𝑛 − 𝑘)𝑟 

2

 

where, 

𝐶 𝑟,𝛼 =
Г(𝑟 + 1)

Г(𝑟 − 𝛼 + 1)
 

𝜀 =    𝑎𝑟𝐶 𝑟,𝛼  𝑛 − 𝐼 𝑟−𝛼
𝑀−1

𝑛=0

𝑁

𝑟=0

− 𝑎𝑟ℎ 𝑘  𝑛 − 𝑘 𝑟
𝑁

𝑘=0

 

2

              (16) 

To reduce the least-square error, derivative of above 

equation must be zero, according to the optimization 

theory, which can be written as 
𝜕𝜀

𝜕ℎ(𝑚 )
= 0, 0 ≤ 𝑚 ≤ 𝑁  

   𝑎𝑟𝐶 𝑟,𝛼  𝑛 − 𝐼 𝑟−𝛼 −  𝑎𝑟ℎ(𝑘)(𝑛 −𝑁
𝑘=0

𝑀−1
𝑛=0

𝑁
𝑟=0

𝑘)𝑟2=0  
 

 ℎ(𝑘)   𝑎𝑟(𝑛 −𝑚)𝑟(𝑛 − 𝑘)𝑟 =𝑀−1
𝑛=0

𝑁
𝑟=0

𝑁
𝑘=0

𝑟=0𝑁𝑛=0𝑀−1𝑎𝑟𝐶𝑟,𝛼𝑛−𝐼𝑟−𝛼(𝑛−𝑚)𝑟         (17) 

 𝑅 𝑚,𝑘 ℎ 𝑘 = 𝑇 𝑚,𝛼      0 ≤ 𝑚 ≤ 𝑁𝑁
𝑘=0                 (18) 

where 

𝑅 𝑚,𝑘 =   𝑎𝑟(𝑛 − 𝑚)𝑟(𝑛 − 𝑘)𝑟𝑀−1
𝑛=0

𝑁
𝑟=0     (19) 

𝑇 𝑚,𝛼 =   𝑎𝑟𝐶 𝑟,𝛼  𝑛 − 𝐼 𝑟−𝛼(𝑛 −𝑚)𝑟𝑀−1
𝑛=0

𝑁
𝑟=0  (20) 
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Solving eq. (18) gives the filter coefficient h(k). In the 

next section, two examples are used to evaluate the 

performance of least square fractional order differentiator. 

IV. EXPERIMENTS AND ANALYSIS 

In this section, the results attained for fractional order 

differentiator based on the least square technique are 

discussed. To validate the effectiveness of the least square 

method, two examples are solved. The main purpose of 

this design method is to decrease the effect of error 

between the ideal and the desired response of fractional 

order differentiator. To estimate the performance of the 

least square fractional order differentiator, the integral 

square error function of frequency response can be written 

as 

𝜀𝑚 =   𝐻(𝑒𝑗𝜔 ) − 𝐻(𝑒−𝑗𝜔 ) 
2𝜋

0
     (21) 

The error is calculated in the frequency range [0,𝜋]  . The 

Grunwald-Letnikov definition was used with range of 

frequency 𝜔 𝜖 [0,𝜋] for the calculation of fractional order 

derivative. 
 

Experiment 1: In this experiment, the design of fractional 

order differentiator has been given for m = 3, N = 2, M = 

3, delay I = 6 and order α = 0.5, the fractional order 

derivative of the polynomial signal has been calculated. 
For α = 0.5, eq. (20) can be written as 

𝑇 3,0.5 =   𝑎𝑟𝐶 𝑟, 0.5  𝑛 − 6 0.5(𝑛 − 3)𝑟2
𝑛=0

2
𝑟=0    

      (22) 

The above coefficients C(r,0.5) are given by 

𝐶 𝑟, 0.5 =
Г(𝑟+1)

Г(𝑟+0.5)
        (23) 

Substituting eq. (22) into eq. (21), we get 

𝑇 3,0.5 =
𝑎0Г(1)

Г(0.5)
 (−6)−0.5 + (−5)−0.5 + (−4)−0.5  

+
𝑎1Г(2)

Г(1.5)
 −3 −6 0.5 − 2 −5 0.5 − (−4)0.5  

+
𝑎2Г(3)

Г(2.5)
 9 −6 1.5 − 2 −5 1.5

− (−4)1.5                                     (24) 
 

For the given m = 3, N = 2, M = 3, delay I = 6 and order α 

= 0:5, eq. (19) can be written as 

𝑅 3, 𝑘 =   𝑎𝑟(𝑛 − 3)𝑟(𝑛 − 𝑘)𝑟             (25)

2

𝑛=0

2

𝑟=0

 

 

 
Fig. 1. Magnitude responses of the fractional order FIR 

differentiators for α = 0:5. 

The solid lines are the designed magnitude responses and 

dotted lines are ideal responses . 

 
Fig. 2. Phase responses of the fractional order FIR 

differentiators for α = 0:5. 
 

The solid line is the designed phase responses and dotted 

lines are ideal responses. 

 
Fig. 3. The integral squared error for the fractional order 

differentiator H(z) with order α in experiment 1. 
 

Fig. 1 illustrates the magnitude response of the fractional 

order differentiator of polynomial signal with α = 0:5. The 

dotted line is the ideal magnitude response 𝜔𝛼 . 

Approximation errors can be decrease by selecting higher 

value of N and M. Fig. 2 shows the phase response of the 

designed fractional order differentiators. The dotted line is 
the ideal phase response 90α. It can be observed that the 

fractional order α must be selected large enough to 

minimize the objective error function. Fig. 3 shows the 

error curve of the projected fractional order differentiator. 

 

Experiment 2: The design Example as given in (Tseng 

(2001)), where N = 10, M = 11, delay I = 5, and order α = 

1; 1:5; 2 is repeated with power function based least 

square method for the designing of fractional order 

differentiator. Fig. 4 shows the magnitude response of 

designed fractional order differentiator and designed 
example in (Tseng (2001)). The fractional order derivative 
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of the specified polynomial signal can be accurately 

calculated using proposed method. 

 
Fig. 4.   Magnitude responses of the  designed 

fractional order  FIR differentiators. (a).  order  α = 1 

(b).order  α = 1.5 (c).  order  α = 2
 

 

V. CONCLUSIONS 
In this paper, a fractional order digital differentiator is 

implemented based on power function and least square 

technique. The objective error function is measured by the 

integral squared error function of frequency response, such 

that the integral squared error can be minimized as much 

as probable. To validate the effectiveness of the designed 

method, two design experiments are presented. The results 

reveal that the least-square technique gives superior 

performance comparison with present filtering techniques. 

The results show that the integral squared error is 

minimized by selecting higher value of truncation length 
N. This technique can also be extended for the design of 

IIR fractional order differentiator. 

 

REFERENCES 
[1] Oldham, K.B., & Spanier, J. (1974). The Fractional Calculus. New 

York, Academic press. 

[2] Skolnik, M.I. (1980). Introduction to Radar Systems. New York, 

McGraw- Hill. 

[3] Dutta Roy, S. C., Kumar,B. (1993). Digital differentiators, in 

Handbook of Statistics. N. K. Bose and C. R. Rao, Eds. 

Amsterdam, The Netherlands: Elsevier 10,159-205. 

[4] Das, S.(2008): Functional Fractional Calculus for System 

Identification and Controls. Springer. 

[5] Mbodje, B., Montseny, G.(1995). Boundary fractional derivative 

control of the wave equation. IEEE Trans. Automat. Cont., 40, 378-

382 

[6] Petras, I.(2011). Fractional order Nonlinear System Modeling, 

Analysis and Simulation. Springer. 

[7] Carlson, G., Halijak, C. (1964). Approximation of fractional 

capacitors (1=s)1=n by a regular Newton process. IEEE Trans. 

Circuit Theory, 11(2), 210-213. 

[8] Dutta Roy, S.C. (1967). On the realization of a constant-argument 

immittance or fractional operator. IEEE Trans. Circuit Theory, 

14(3), 264-274. 

[9] Matsuda,K., Fujii, H. (1993). H1 optimized wave-absorbing 

control: analytical and experimental results. J. Guid.Control Dyn., 

16(6), 1146-1153. 

[10] Oustaloup, A., Levron, F., Mathieu, B., Nanot, F.M.(2000). 

Frequency- band complex noninteger differentiator: 

characterization and synthesis. IEEE Trans. Circuits Syst. I 

Fundam. Theory Appl., 47(1), 25-39. 

[11] Krishna, B.T. (2011). Studies on fractional order differentiators and 

integrators: A survey. Signal Process., 91, 386-426. 

[12] Pei, S. C., Shyu, J. J. (1996). Analytic closed form matrix for 

designing high order digital differentiators using eigen approach. 

IEEE Trans. Signal Process., 44, 698-701. 

[13] Tseng, C.C. (2000). Stable IIR digital differentiator design using 

iterative quadratic programming approach. Signal Process.80, 857-

866. 

[14] Khan, I.R., Ohba, R. (1999). New design of full band differentiators 

based on Taylor series. Proc. Inst. Elect. Eng., Vis. Image Signal 

Process., 146, 185-189. 

[15] Tseng, C.C. (2001). Design of fractional order digital FIR 

differentiators. IEEE Signal Process. Lett., 8(3), 77-79. 

[16] Gupta, M., Varshney, P., Visweswaran, G. S. (2011): Digital 

fractional-order differentiator and integrator models based on first-

order and higher order operators.Int. J. Circ. Theor. Appl., 39(5), 

461-474. 

[17] Vinagre, B. M., Chen,Y. Q., Petras, I. (2003). Two direct tustin 

discretization methods for fractional-order differentiator/integrator. 

J. Franklin Inst., 340(5), 349-362. 

[18] Samadi, S., Ahmad, M.O., Swamy, M.N.S. (2004). Exact fractional 

order differentiators for polynomial signals. IEEE Signal Process. 

Lett., 11(6), 529-532. 

[19] Tseng, C.C. (2008). Series expansion design of variable fractional 

order integrator and differentiator using logarithm. Signal Process., 

88, 2278-2292. 

[20] Chen, Y.Q., Moore, K.L. (2002). Discretization schemes for 

fractional order differentiators and integrators. IEEE Trans. Circuits 

Syst. I Fundam. Theory Appl., 49(3), 363-367. 

[21] Chen, Y.Q., Vinagre, B.M. (2003). A new IIR-type digital 

fractional order differentiator. Signal Process., 83(11), 2359-2365. 

[22] Barbosa, R.S., Machado, J.A.T., Silva, M.F. (2006). Time domain 

design of fractional differ-integrators using least-squares. Signal 

Process., 86, 2567-2581. 

[23] Tseng, C.C. (2006). Improved design of digital fractional-order 

differentiators using fractional sample delay. IEEE Trans. Circuits 

Syst. I Regul. Pap., 53(1), 193-203. 

[24] Tseng, C.C., Lee, S.L. (2010). Design of fractional order digital 

differentiator using radial basis function. IEEE Trans. Circuits Syst. 

I Regul. Pap., 57(7), 1708-1718. 

[25] Tseng, C.C. (2004). Design and application of variable fractional 

order differentiator. In Proceedings of IEEE Asia-Pacific 

Conference on Circuits and Systems, 405-408. 

[26] Tseng, C.C., Lee, S.L. (2013). Closed-form design of fractional 

order differentiator using discrete cosine transform. In IEEE 

International Symposium Conference on Circuits and Systems 

(ISCAS), pp. 2609-2612. 

[27] Tseng, C.C. (2006). Design of variable and adaptive fractional 

order differentiators. Signal Process., 86, 2554-2566. 

[28] Tseng, C.C., Lee, S.L. (2010). Design of fractional order 

differentiator using discrete fourier transform interpolation. In 

International Symposium conference on Communications and 

Information Technologies (ISCIT), 306-311. 

[29] Tseng, C.C., Lee, S.L. (2012). Design of adjustable fractional order 

differentiator using expansion of ideal frequency response. Signal 

Processing, 92, 498-508. 

[30] Charef, A., Bensouici, T. (2012). Design of digital FIR variable 

fractional order integrator and differentiator. Signal, Image and 

Video Process., 6(4), 679-689. 

[31] Chen, D.L., Chen, Y.Q., Xue, D.Y. (2011). Digital fractional order 

Savitzky- Golay differentiator. IEEE Trans. Circuits Syst. II 

Express Briefs, 58(11), 758-762. 


